- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Aviyente, Selin (2)
-
Al-Sharoa, Esraa M. (1)
-
Al-sharoa, Esraa (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Networks offer a compact representation of complex systems such as social, communication, and biological systems. Traditional network models are often inadequate to capture the diverse nature of contemporary networks, which may exhibit temporal variation and multiple types of interactions between entities. Multilayer networks (MLNs) provide a more comprehensive representation by allowing interactions between nodes to be represented by different types of links, each reflecting a distinct type of interaction. Community detection reveals meaningful structure and provides a better understanding of the overall functioning of networks. Current approaches to multilayer community detection are either limited to community detection over the aggregated network or are extensions of single-layer community detection methods with simplifying assumptions such as a common community structure across layers. Moreover, most of the existing methods are limited to multiplex networks with no inter-layer edges. In this paper, we introduce a spectral-clustering-based community detection method for two-layer MLNs. The problem of detecting the community structure is formulated as an optimization problem where the normalized cut for each layer is minimized simultaneously with the normalized cut for the bipartite network along with regularization terms that ensure the consistency of the within- and across-layer community structures. The proposed method is evaluated on both synthetic and real networks and compared to state-of-the-art methods. MLNs. The problem of detecting the community structure is formulated as an optimization problem where the normalized cut for each layer is minimized simultaneously with the normalized cut for the bipartite network along with regularization terms that ensure the consistency of the intra- and inter-layer community structures. The proposed method is evaluated on both synthetic and real networks and compared to state-of-the-art methods.more » « less
-
Al-Sharoa, Esraa M.; Aviyente, Selin (, IEEE Access)
An official website of the United States government
